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ABSTRACT 

Different from Cauchy elastic materials, generalized continua and in particular constrained Cosserat 
materials, can be designed to possess extreme orthotropy properties and in this way to model folding 
and faulting in a three-dimensional solid. Following this approach, folding and faulting spontaneously 
emerge as a deformation pattern occurring in a strongly anisotropic solid. These patterns are obtained 
with a perturbation technique, which involves the derivation of new two-dimensional Green's functions 
for applied concentrated force and moment. The results of the presented study show that extreme 
materials can be realized in practice and employed to explore, as yet, unattained mechanical behaviors. 
 
1 INTRODUCTION 

During folding, bending localizes at sharp edges separated by almost undeformed elements. This 
mechanical process is uncommon in Nature, although some exceptions can be found in unusual layered 
rock formations (called ‘chevrons’) and seashell patterns (for instance Lopha cristagalli). In elasticity, 
bending is common (for example, in bulk wave propagation), but folding is usually not achieved. The 
present work shows the route leading to folding for an elastic solid is couple-stress theory with an 
extreme anisotropy. Materials with extreme mechanical anisotropy are designed to work near a material 
instability threshold where they display stress channelling and strain localization, effects that can be 
exploited in several technologies. Material instabilities are analyzed in terms of: positive definiteness of 
the strain energy, strong ellipticity, wave propagation, ellipticity, and emergence of surfaces of 
discontinuity [1].  

A perturbation technique is introduced to demonstrate folding, which involves the derivation of new 
Green’s functions for applied concentrated force and moment. While the former perturbation reveals 
folding, the latter shows that a material in an extreme anisotropic state is also prone to a faulting 
instability, in which a displacement step of finite size emerges [2, 3]. Green’s functions are derived for 
antiplane and plane strain states, for static and time-harmonic forces, which opens the way to integral 
equations and boundary element techniques.  

In dynamics, the Green’s function approach shows that the folding which emerges near a steadily 
pulsating source (in the limit of failure of ellipticity) is transformed into a disturbance with wave fronts 
parallel to the folding itself. Special attention is devoted to the presence of rotational micro-inertia. This 
feature is explored as connected to pattern formation. It is shown that its magnitude can change the sign 
of the lower-order derivatives in the differential equations of motion, so that its effect on the emergence 
of deformation patterns is very complex and sometimes counter-intuitive [4]. 

 
2  FUNDAMENTALS OF CONSTRAINED COUPLE-STRESS ANISOTROPIC ELASTICITY 

In this Section, the equations governing the linearized elastic mechanical response are introduced for 
anisotropic couple-stress solids. A detailed presentation of the three-dimensional theory can be found in 
[1]. For linear constitutive behavior, the strain-energy density assumes the following general quadratic 
form for centrosymmetric materials 
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2 2
pqmn pq mn pqmn pq mnW     C B , (1) 

where ,pq q p   is the curvature tensor defined as the gradient of the rotation ,(1 / 2)q qpk k pe u   qpke  

isthe Levi-Civita alternating symbol, qu  is the displacement vector, pq  is the standard strain tensor, 

and ( , )pqmn pqmnC B  are the elasticity tensors.  

The equations of motion in terms of the displacement components (the counterpart of the Navier-
Cauchy equations of the classical theory) assume the following form [4] 
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
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 C B .  (2) 

in which  q qx    , qX  the body force per unit volume, qY  the body couple per unit volume, 

0   is the mass density, and pq  is the micro-inertia structural tensor the components of which have 

dimensions of [length]. The superposed dot denotes time differentiation and the comma denotes spatial 
differentiation with respect to rectangular Cartesian coordinates. Indicial notation and the usual 
summation convention on repeated indices is used throughout the paper. 

The necessary and sufficient conditions for the strain energy density W  in Eq. (1) to be positive 
definite (PD) are 

    0, Sym \ 0 and 0, Dev \ 0    pqmn pq mn pq pqmn pq mn pq          C B   (3) 

where Sym  denotes the set of all symmetric tensors, Dev  is the set of all deviatoric tensors, and 0  
denotes the null element, which is excluded from the definition of positive definiteness. The condition 
of (PD) is sufficient for unconditional stability and uniqueness of the solution of the mixed boundary 
value problem [2,5].  

The propagation of plane waves in couple-stress elasticity is now considered. By substituting a plane-
wave solution in the equations of motion (2) and assuming null body forces and couples, leads to the 
propagation condition [4] 

 2 1/2   I M d 0A ,  (4) 

where d  is the wave amplitude vector,   is the angular frequency, I  is the identity tensor, 
1/2 1/2  M AMA  is the acoustic tensor for a constrained Cosserat medium with micro-inertia and 

 with 
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and 

    ( ) ( ) 1
and     

4
qn pqmn p m qn pqk smn m p t r rktsA n n A e e n n n n n nC BC B ,  (6)        

where n  the unit propagation vector, and k  the wavenumber (in general complex). The tensor ( )A C  is 
acoustic tensor of classical elasticity. Note that the symmetries of the elasticity tensors C  and B  imply 

also that ( )A C  and ( )A B  are symmetric second-order tensors. In addition, it can be readily verified that: 
A A  and Γ Γ . As it was shown in [1], ( )A B  is a singular tensor that always possesses one null 

eigenvalue corresponding to the eigenvector n , i.e. ( )A n = 0B . The same property is shared by tensor 
Γ . This degeneracy has important implications in the propagation of plane waves. An immediate 

consequence of the properties of the tensor Γ  is that, if pq  is positive semi-definite, the two (non-

 M I Γ
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trivially null) eigenvalues of Γ  are always non-negative. Under these circumstances, the tensor I Γ
is always positive definite, and thus invertible. Note that when the Cosserat medium has no micro-inertia 
( Γ 0 ) then the acoustic tensor becomes  AA  [1,3].  

For plane waves to propagate a sufficient condition is that the acoustic tensor is positive definite, this 
implies that the following inequalities must hold [4] 

 ( ) ( )0, 0, 0,       p A p p A p p p p 0C B    (7) 

augmented with the condition 0 p Ap , so that both ‘ 0 ’ cannot simultaneously apply in first two 

inequalities. In fact, the above conditions imply that p  cannot be an eigenvector corresponding to a null 

eigenvalue of both ( )A C  and ( )A B . The inequalities in (7) constitute the wave propagation (WP) 
conditions in dynamic constrained Cosserat elasticity with micro-inertia. 

The definition of ellipticity (E) is now examined in a way appropriate for the system of the 
governing partial differential equations in (2) . Assuming zero body forces and moments and neglecting 
inertial effects, the fourth-order governing differential operator L  of constrained Cosserat elasticity 
assumes the following form 

   1
L L L

4
qn qn qn pqmn p m pqk smn rkts m p r te e          C B C B ,  (8) 

with Lqn

C  being the second-order (classical lower) part and Lqn

B  the fourth-order (higher) part of the 

operator. It can be shown that the principal part of the symbol of the above operator is degenerate, so 
that the system of PDEs in couple-stress elasticity is not elliptic in the standard sense [1]. The conditions 
of ellipticity (E) have been thoroughly investigated in [1, 4] and a procedure to deal with the degeneracy 
of the principal operator was proposed. The conditions of (E) assume the following form 

     ( )

2 30, 0,      n n n A nC , (9) 

where 
2  and 

3  are the non-vanishing eigenvalues of ( )A B)  and ( )

  n A nC . The fact that only the 

conditions (9)1 and (9)2  refer to the Cosserat moduli, whereas condition (9)3 involves the classical 
(Cauchy) moduli, is attributed to the degeneracy of the principal part of the symbol in couple-stress 
elasticity. This degeneracy is directly related to the fact that in the constrained Cosserat theory the strain 
energy depends upon the gradient of the rotation (8 independent components) and not upon the complete 
gradient of strain (18 independent components). 
 
3 STATIC FOLDING IN A CONSTRAINED COSSERAT MATERIAL 

In what follows, the folding of a constrained Cosserat continua is examined under static antiplane strain 
and plane-strain conditions. The fundamental equations and the conditions of (PD), (WP) and (E) are 
given in both cases. The route leading to folding is obtained with a perturbation technique, which 
involves the derivation of a new two-dimensional Green's function for a concentrated force. 

3.1 A constrained Cosserat orthotropic material under antiplane strain conditions 

When antiplane strain conditions prevail, the displacement field can be expressed in the 1 2( , )x x -

plane as: 1 2 0u u   and  3 1 2,u w x x .  

Enforcing equilibrium yields a single PDE of the fourth-order for the out-of-plane displacement 
component 

 2 1
3

1 2

1
0

2

Y Y
Lw X

x x

  
      

  (10) 

where the differential operator L is defined as 
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  (11) 

with 44
c and 55

c  being the ‘classical’ shear moduli characterizing the underlying orthotropic Cauchy 

material subject to antiplane strain conditions, and 1 2 3 4
( , , , )b b b b  the couple-stress bending and torsion 

moduli with the dimension of a force. Moreover, 3X  is the body force component in the out-of-plane 

direction and  ,x yY Y  are the in-plane components of the body couple. Note that neglecting the body 

force and couple, the equilibrium equation (10) is of the same form as the equation of bending of thin 
orthotropic plates with prestress. In particular, the principal part csL w  is associated with the deflection 
of the plate, whereas the classical (lower) part clL w  plays the role of the prestress.  

The strain energy density W  is positive definite (PD) when the material moduli satisfy the following 
inequalities 

     2

44 55 1 2 4 2 4 3PD 0, 0, PD 0, 0, 0, 0c c b b b b b b        
C B

,  (12) 

Further, sufficient conditions for waves to propagate in all directions n  and for all wavenumbers in 
an orthotropic constrained Cosserat material are 

 
44 55

2 4 0 2 4

0, 0,
(WP)

0, 0, ,

c c

b b b b b

 


   





  (13) 

augmented with the condition 
33 0A   where 33A  is the non-vanishing component of the acoustic tensor 

(Eq. (5)1) in the antiplane case considered here. In addition, the parameter 0 1 3b b b   is defined in the 
case of antiplane strain that combines torsional and secondary bending effects.  

Finally, the conditions (E) in the antiplane strain case involve only the Cosserat moduli and assume 
the following form 

   2 4 0 2 4E 0,b b b b b      (14) 

Note that the (E) conditions for a classical Cauchy orthotropic material are: 55 44 0c c  . In what follows, 

unless otherwise stated, it will be assumed that 44 0c   and 4 0b  . Under these circumstances, loss of 

(E) is attained when either (i.) at the elliptic-imaginary to parabolic (EI/P) boundary, where 2 0b   and 

0 2 4b b b   or (ii.) at the elliptic-complex to hyperbolic (EC/H) boundary where 2 0b   and 

0 2 4b b b  . In particular, as it will be shown next, at the (EI/P) boundary only one possible 

discontinuity surface emerges which is aligned parallel to the 2x -axis. On the other hand, at the (EC/H) 

boundary two discontinuity surfaces are possible. The inclination angle   (with the x -axis) of the 

normal to the discontinuity surfaces depends solely upon the ratio 2 4b b , and can be calculated at the 

(EC/H) boundary as:  1/22
2 4tan b b  . 

 

3.1.1 Green’s functions for concentrated force and moment 

In the case of an out-of-plane concentrated force S the field equation governing antiplane 

deformations assumes then the following form: ( ) ( )Lw S x y   , where ()  is the Dirac Delta 

function. An exact solution is obtained by employing the double exponential Fourier transform in the 

following form 
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1
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where    2 2 4 2 2 4
1 2 55 1 44 2 2 1 0 1 2 4 2

1
, 2

4
D k k c k c k b k b k k b k      is the characteristic polynomial with 

1 2( , )k kk  being the Fourier vector. The inversion integral is evaluated through contour integration and 
numerical treatment [2]. An analogous procedure is followed for the solution of the concentrated 
moment problem [2]. 

There are two cases of loss of (E) in an orthotropic couple-stress material under antiplane strain 
conditions. The first is at the boundary of the elliptic-imaginary/parabolic regime (EI/P), whereas the 
second occurs at the boundary of the elliptic-complex/hyperbolic regime (EC/H). It is shown below that 
in both these cases, the solution produced by the infinite-body antiplane Green’s function (15) exhibits 
weak elastostatic shocks (i.e. finite jump discontinuities in certain components of the deformation 
gradient). On the other hand, the displacement remains continuous but displays localized folding, a 
phenomenon that cannot be captured within the context of the classical elasticity theory. When the 
material is perturbed by a concentrated in-plane moment, a faulting instability emerges related with a 
finite discontinuity in the displacement. Finally, note that the Cosserat orthotropic material under 
antiplane strain conditions is characterized effectively by three dimensionless parameters, namely: 

55 44c c  , 2 4b b  , and 0 4b b  . A characteristic length   is also defined through the relation 
2

4 444b c  . 

3.1.2 Folding and faulting of a Cosserat continuum under antiplane conditions 

At the (EI/P) boundary, loss of ellipticity is attained when 0   and 0  , and single localized 

folding is formed. On the other hand, at the (EC/H) boundary, loss of ellipticity is attained when 0   

and    , and cross localized folding is formed. Figures 1a and 1b display the single and cross 

folding of Cosserat material when an antiplane concentrated unit force is applied to an orthotropic 
material at failure of ellipticity. For the cross folding case, it is observed that when (E) is lost two 
discontinuity surfaces are created with an inclination of 45    and a double folding emerges along 

the lines y x  . Along these folds the normal derivative of the displacement nw  exhibits a finite jump 
that decays away from the origin. In both cases, although ellipticity fails, the (WP) condition still holds 
(provided that 44 0c   and 55 0c  ), so that the Green’s function (15) can still be obtained.  

   

             
 

Figure 1: Folding under antiplane strain conditions is evidenced by the dimensionless out-of-plane displacement 
produced by an antiplane concentrated unit force applied at the origin: (left) Single folding emerging at the 

(EI/P) boundary for an orthotropic material ( 1 / 2  , 0  , and 1  ). (right) Cross folding emerging at the 
(EC/H) boundary for an orthotropic material ( 1 / 2  , 1  , and 1   ). 

 
The application of a concentrated antiplane moment on an extreme Cosserat material at failure of 

ellipticity yields the emergence of faulting (elastostatic shocks of finite amplitude) in single and cross 
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geometries. It is worth noting that there is no counterpart of such type of deformation in the classical 
theory of elasticity. For the case of a concentrated unit moment (assumed parallel to the 2x -axis), the 
two situations of loss of ellipticity, on the (EI/P) and the (EC/H) boundary are respectively considered 
in Figs. 2a and 2b, where the dimensionless displacement is plotted. In particular, Fig. 2a shows the 
formation of single faulting along the discontinuity line 1 0x  , at loss of ellipticity at the (EI/P) 
boundary for an orthotropic Cosserat material. On the other hand, at the (EC/H) boundary, two 
discontinuity surfaces emerge (Fig. 2b). 

 

     
 
Figure 2: Folding under antiplane strain conditions is evidenced by the dimensionless out-of-plane displacement 
produced by an antiplane concentrated unit force applied at the origin: (left) Single faulting emerging at the (EI/P) 
boundary for an orthotropic material ( 1 / 2  , 0  , and 1  ). (right) Cross faulting emerging at the (EC/H) 
boundary for an orthotropic material ( 1 / 2  , 1  , and 1   ). 

 
3.2 A constrained Cosserat orthotropic material under plane-strain conditions 

When plane strain conditions prevail, the displacement field can be expressed in the 1 2( , )x x -plane 

as: 1 1 1 2( , )u u x x  and 2 2 1 2( , )u u x x , while the out-of-plane component of the displacement is null.  

Enforcing equilibrium yields a coupled system of PDEs of the fourth-order for the in-plane 
displacement vector  1 2,u uu , which can be concisely written as:  Lu F 0 , where the matrix 

differential operator is defined as C P L L L  where 

 
 

   
2 2 2

11 1 66 2 12 66 1 2C P 2 2 2 1 2
1 1 2 22 2 2

12 66 1 2 66 1 22 2 1 2 1

,
c c c c

c c c c
 

          
                 

L L ,  (16) 

with 11c , 12c , 22c , and 66c  being the ‘classical’ moduli characterizing the underlying orthotropic 

Cauchy material subject to plane-strain conditions, and 1 , 2  the couple-stress bending moduli with 

the dimension of a force. Moreover,  pL  is the principal fourth order operator, CL  the lower-order 
classical elasticity operator, and F  is a generalized force [3]. 

The strain energy density is positive definite (PD) when the material moduli satisfy the following 
inequalities 

    11 22 11 22 12 11 22 66 1 2PD 0, 0, , 0, PD 0, 0c c c c c c c c           C B
  (17) 

Further, sufficient conditions for waves to propagate in all directions n  and for all wavenumbers in 
an orthotropic constrained Cosserat material are 
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  and   

1 2 1 2 66

1 2 66

0, 0, 0, and 0

or

0, 0, and 0

c

c

   

 
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  







 (18) 

Note that when 12 11 22c c c  or 66 0c   with all the other strict inequalities satisfied in Eq. (18), (PD) 

and (SE) are lost simultaneously, but waves can still propagate. Therefore (SE) is only a sufficient 
condition for wave propagation in a constrained Cosserat material. The (WP) condition plays a major 
role for the derivation of the infinite body Green’s functions. In what follows it will always be assumed 
that the (WP) conditions hold always for the constrained Cosserat material. 

Finally, the conditions (E) in the plane-strain case involve only the Cosserat moduli and assume the 
following form 

 

   11 22 12 66 11 22 1 2E 0, 2 , 0c c c c c c         (19) 

Note that the (E) conditions for a classical Cauchy orthotropic material are given by Eqs. (19)1, (19)2 

augmented by the relations 66 0c   and 12 11 22c c c . 

In what follows, unless otherwise stated, it will be assumed that 22 0c   and 2 0  . Under these 

circumstances, loss of (E) is attained when either 1 0   or 11 0c  . In both cases, the conditions of (E), 

(SE), and (PD) fail simultaneously. The special case where 12 66 11 222c c c c    will not be considered 

in the present study since (PD) is lost before (SE). It will be shown that when 1 0  , loss of (E) triggers 

new phenomena such as folding and faulting that cannot be described by the classical theory. 

 

3.2.1 Green’s functions for concentrated force and moment 

In the case of an in-plane concentrated force  1 2,P PP , the field equations governing plane-strain 

deformations assume then the following form 1 2( ) ( )x x  Lu P . An exact solution for the 

displacement field is obtained by employing the double exponential Fourier transform in the following 
form 

    
  1 22

d d
4

p pq i
q

P C
u e k k

D

 

 




 
 



k x
k

x
k

  (20) 

where    Cof ,pm pmC A k   k n  is the cofactor of the acoustic tensor with components 

          2 2 2 2 2 2 2
11 66 1 22 2 1 1 1 2 2 12 21 1 2 12 66 1 1 2 2,C c k c k k k k C C k k c c k k              

  2 2 2 2 2
22 11 1 66 2 2 1 1 2 2C c k c k k k k     ,  (21) 

and  D k  is the characteristic polynomial identified with the determinant of the acoustic tensor

  2
11 22 12detD C C C  k A . The inversion integral is evaluated through contour integration and 

numerical treatment [3]. An analogous procedure is followed for the solution of the concentrated 
moment problem [3]. Note that the Cosserat orthotropic material under antiplane strain conditions is 
characterized effectively by four dimensionless parameters, namely: 11 22c c  , 12 22c c  , 

66 22c c  , 1 2   , and 2
2 22c   , where   is the characteristic length. 
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3.2.2 Folding and faulting of a Cosserat continuum under plane-strain conditions 

In the case of an orthotropic couple-stress material under plane-strain conditions, folding and faulting 
occurs when the ratio 1 2    tends to zero or to infinity, so that loss of ellipticity (of the Cosserat 
part of the constitutive tensors) is attained.  

Figure 3 depicts the level sets of the dimensionless displacement components produced by a 
concentrated unit force  0, 1 P , aligned with the 2x -axis of orthotropy. More specifically, Fig. 3a 

on the left shows that in a couple-stress material at the failure of ellipticity the normalized vertical 
displacement becomes piecewise smooth (so that a vertex is displayed) across the discontinuity line 

1 0x  . It is worth noting that for the couple-stress material under investigation, both (E) and (PD) are 

lost simultaneously when 1 0  , but the (WP) condition still holds, so that the Green’s function (20) is 
well defined. In fact, it is rather remarkable that at the failure of (E) the displacement components remain 
bounded (apart from the origin) even on the line of discontinuity ( 1 0x  ). On the other hand, Fig. 3a on 
the right depicts the response of the underlying classical Cauchy material without Cosserat effects which 
is positive definite (far from ellipticity loss) and, thus, no localization is observed. 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3: (a) Dimensionless level sets of the displacement components 22 1c u  and 22 2c u  due to a concentrated 

unit force acting at the origin of the axes and aligned with the 2x -axis of orthotropy, (left column) Couple-stress 

material at the failure of ellipticity (α=) ( 0.5  , 0.5  , 0.2  , 0  ), (right column) The underlying 

classical material ( 0.5  , 0.5  , 0.2  ) far from ellipticity loss where localization is not observed. (b) 
The actual deformed shape of a rectangular region D  referred to the undeformed configuration, (up) Folding is 

clearly visible. (down) The underlying classical Cauchy shows a diffused, mild, bending. 
 
 

The formation of folding in the couple-stress material is more clearly depicted in Fig. 3b, where the 
actual deformed shape of a rectangular region referred to the undeformed configuration (highlighted 
with a red rectangle in Fig. 3a) is shown for both the couple-stress and the underlying classical materials. 
It is observed that the couple-stress material (Fig. 3b, up) folds along the discontinuity line 1 0x   
(white/black dashed line) forming a single (chevron-type) in-plane crease. The lateral sides of the region 
D  remain almost straight and an extremely localized bending (curvature tending to infinity) occurs on 
the line where the material folds. This situation closely resembles the folding formation in layered rocks 
and is in marked contrast with the behavior of the underlying classical Cauchy material where all sides 
of the region D  undergo a small-curvature diffused bending (Fig. 3b, down).  
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Figure 4 depicts the level sets of the dimensionless displacement components produced by a 
concentrated unit out-of-plane moment. In Fig. 4a (left column), it is shown that in a couple-stress 
material at the failure of ellipticity the vertical displacement becomes discontinuous across the line 

1 0x  . On the other hand, in Fig. 4a (right column) the response of a positive definite couple-stress 

material shows that the displacement field is continuous and, thus, no localization is observed. The 
formation of faulting is illustrated more clearly in Fig. 4b, where the actual deformed shape of the 
rectangular region D  referred to the undeformed configuration (red rectangle in Fig. 4a), is shown for 
both the extreme ( 0  ) and non-extreme ( 0.5  ) couple-stress materials. It can be observed that at 
the failure of ellipticity (Fig. 4b, up) an in-plane slip discontinuity of finite width is formed. 

 
 

 
       

 
 
                                                                     

 

 

 

 

 

 

 

 

 
 

Figure 4: (a) Dimensionless level sets of the displacement components 22 1c u  and 22 2c u  due to a concentrated 

unit moment acting at the origin of the axes, (left column) Couple-stress material at the failure of ellipticity (
0.5  , 0.5  , 0.2  , 0  ) evidences faulting, (right column) A couple-stress material far from 

ellipticity loss ( 0.5  , 0.5  , 0.2  , 0.5  ). (b) The actual deformed shape of a rectangular region D  

referred to the undeformed configuration, (up) Faulting is clearly visible. (down) No localization is observed in 
the positive definite Cosserat material. 

 
 

4 DYNAMIC FOLDING IN A CONSTRAINED COSSERAT MATERIAL 

The time harmonic response of a constrained Cosserat material under antiplane strain conditions is 
examined revealing the interplay between dynamics and folding mechanisms. Special attention is 
devoted to the presence of rotational micro-inertia. This feature is explored as connected to pattern 
formation.  

For the time-harmonic case, the out-of-plane displacement assumes the following form: 

   1 2 1 2, , , i tw x x t w x x e  , and accordingly the equation of motion becomes in the frequency domain 
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where  2 2
11 22,h h  are the non-vanishing components of the micro-inertia tensor for an orthotropic 

Cosserat material under antiplane deformations, and 
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It is important to realize now that, since only the principal 4th order part of the differential operator plays 
a role in determining the regime classification, the classification of Eq. (22) for the time-harmonic 
response remains the same as for the static case (see Eq. (14)). It is interesting to observe that the terms 

44f  and 55f  in Eq. (22) are related to the lower-order part of the differential operator and may change 

sign according to the values of the micro-inertia parameters for a fixed frequency  . Indeed, these terms 
could become negative for high values of micro-inertia parameters, which, in turn, implies that although 
the equation remains elliptic, the solution would change character. From the viewpoint of plate theory, 
such a change of sign would correspond to passing from tensile to compressive pre-stress in the x- and 
y-directions. A time harmonic Green’s function for a concentrated force is now evaluated using the same 
approach as in the static case but now taking into account the contribution of the poles that arise on the 
real axis due to inertial effects [4]. The inversion integral has the same form as in Eq. (15) but the 
characteristic polynomial is now defined as: 

    
2 2
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.  (24) 

To characterize the material orthotropy, we introduce additionally the following dimensionless 
parameters: 22 11    and 11    . Moreover, a dimensionless frequency 1/2 1/2

44d c      is 
introduced.  
 
4.1 Dynamics of folding patterns in a Cosserat medium  

For zero micro-inertia ( 11 22 0   ) folding is observed at the (EI/P) boundary where loss of ellipticity 

is attained for 0   and 0  , and at the (EC/H) boundary where loss of ellipticity is attained when 

0   and    . Figure 5, illustrates the formation of a localized single folding (left) and cross 

folding (right) due to a harmonic concentrated out-of-plane unit force applied at the origin at a 
normalized frequency 1d  . Only the real part of the dimensionless out-of-plane displacement is 

shown.  
 

                   
 
Figure 5: Dynamic response of an extreme orthotropic material without micro-inertia at (left) the (EI/P) boundary 
of (E) loss ( 0, 0.25, 0.25)      and (right) the (EC/H) boundary of (E) loss

( 0.5, 0.5 0.25)      . Only the real part of the dimensionless out-of-plane displacement is shown as 

produced by an antiplane concentrated time-harmonic force at the dimensionless frequency 1
d

  . 
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The role of micro-inertia is now investigated now as connected to the formation of folding patterns. 
The behavior of the solution depends strongly upon the terms 44f  and 55f   which may change sign 

according to the magnitude of the micro-inertia parameters.  
For single folding emerging at the (EI/P) boundary of loss of (E), two special cases are considered 

highlighting the effects of micro-inertia, namely, (case a) 44 0f  , 55 0f  and (case b) 44 0f  , 55 0f 
. Fig. 6 on the left, shows that as the micro-inertia parameters increase, the wavelength of the disturbance 
decreases significantly as compared to a Cosserat medium without micro-inertia (see Fig.5a). Moreover, 
the wave fronts become now parallel to the discontinuity line 1 0x  . Further increase of the micro-

inertia parameters results in 55 0f   and the response to the perturbation changes qualitatively. Indeed, 

it is shown in Fig. 6 on the right that the disturbance corresponds to a mode of rapidly decaying 
oscillations in the direction normal to the discontinuity line. 
 

                  
 
Figure 6: Single folding of an extreme orthotropic material with micro-inertia at the (EI/P) boundary of (E) loss 

with ( 0, 0.25, 0.25, 1       ) (left) Case (a) - 0.9 3   (right) Case (b) - 1.1 3  . Only the real 

part of the dimensionless out-of-plane displacement is shown as produced by an antiplane concentrated time-
harmonic force at the dimensionless frequency 1

d
  . Note that for case (a) the disturbance degenerates into 

waves propagating only parallel to the folding line ( 1 0x  ), while for case (b) the disturbance rapidly decays in 

the 1x  direction, but propagates along the discontinuity line 1 0x  , thus showing an example of a folding wave. 

 

                  
 
Figure 7: Cross folding of an extreme orthotropic material with micro-inertia at the (EH/C) boundary of (E) loss 

with ( 0.5, 0.5 0.25, 0.5)         (left) Case (a) - 1.8 3   (right) Case (b) - 2.2 3  . Only the 

real part of the dimensionless out-of-plane displacement is shown as produced by an antiplane concentrated time-
harmonic force at the dimensionless frequency 1

d
  .  
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For cross folding emerging at the (EH/C) boundary of loss of (E), two special cases are considered 
highlighting the effects of micro-inertia, namely, (case a) 44 0f  , 55 0f  and (case b) 44 0f  , 55 0f 
. Fig. 7 illustrates the influence of micro-inertia in the formation of cross folding. As in the case of single 

folding, it is observed that the wavelength of the disturbance decreases significantly as 2 3   (this 
special value corresponds to the case where 44 55 0f f   at 1

d
  ) compared with the respective result 

for a Cosserat medium with null micro-inertia (Fig. 6 on the right). In addition, the disturbance is 
produced by the superposition of two wave fronts parallel to the discontinuity lines inclined at 40   

in this case that propagate with decreasing amplitude. For 2 3   the disturbance becomes confined 
in a zone close to the lines of discontinuity and decays quickly away from them.  
 
 
5 CONCLUSIONS 

Generalized continua, and particularly constrained Cosserat materials, can be designed to possess 
extreme (near a failure of ellipticity) orthotropy properties and in this way to model folding in a three-
dimensional solid. This is impossible within the realm of Cauchy elastic materials. Following this 
approach, folding, which is a narrow zone of highly localized bending, spontaneously emerges as a 
deformation pattern occurring in a strongly anisotropic solid. The results of the presented study 
introduce the possibility of exploiting constrained Cosserat solids for propagating waves in materials 
displaying origami-patterns of deformation. 
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